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ABSTRACT

Nonintrusive measurements of density, temperature, and

their turbulent fluctuation levels have been obtained in the

boundary layer of an unseeded, Mach 2 wind tunncl fow. The

spectroscopic technique that was used to make the measurements

is based on the combination of laser-induced oxygen fluorescence

and Raman scattering by oxygen and nitrogen from the same

laser pulse. Results from this demonstration experiment are com-

pared with previous measurements obtained in the same facility
using conventional probes and an earlier spectroscopic technique.

Densities and temperatures measured with the current technique

a6,rcc with the previous surveys to within 3% and 2%, respec-

tively. The fluctuation amplitudes for both variables agree with

the measurements obtained using the earlier spectroscopic tech-

nique and show evidence of an unsteady, weak shock wave that

perturbs the boundary layer.

INTRODUCTION

The development of spectroscopic techniques for tim inves-

tigation of turbulent, compressible flow phenomena is directed
towards the simultaneous measurement of mean values and fluc-

tuation levels for multiple gasdynamic variables [1]. One such

technique has been developed for measuring density, tempera-
ture, and their turbulent fluctuations in high-speed, compressible

flows using laser-induced fluorescence (LIF) of oxygen in combina-

tion with Raman scattering from oxygen and nitrogen [2,3]. The

principal advantage of this approach is that flow seeding is unnec-

essary and measurement uncertainties dim to temporal or spatial

scx:d nonuniformity are thereby avoided. In this report we present

measurements obtained with this LIF/Raman (LIF/R) technique

in a turbulent, supersonic air flow. Following a description of the

LIF/R technique and a discussion of the instrumentation, pro-

files of density, temperature, and their fluctuation amplitudes

arc presented for the flow boundary layer. These profiles arc

compared with previous results which were obtained from con-

vcntional probe and nitric-oxide (NO)-LIF measurements ia the

same facility [4,5]. The favorable agreement between the present

and previous surveys demonstrates the ability of the LIF/R tech-

nique to accurately characterize the thermodynamic variables in

unseeded, turbulent, supersonic flows.

LIF/R TECHNIQUE

Experimental investigations into the spectroscopy of both

the LIF and Raman processes that guided the development of the

LIF/R technique arc detailed in previous publications [2,3]. The

following discussion is a brief outline of the important aspects

of LIF/R spectroscopy relevant to its implementation as a flow

diagnostic technique.

The temperature measurement capability of the LIF/R tech-

nique is based on the use of a narrow-band, ArF-excimcr laser

to iaduec fluorescence from a single to-vibrational transition of

the oxygen Schumann-rtungc system. A notable feature of this

system is that the upper electronic state of the transition is per-

turbed by an unbound state that provides a prcdissociativc dccx-

citation path for resonant oxygen molecules. For the vibrational

bands acce_iblc to the ArF laser, the predissociative depopula-
tion rate of the upper state is at ]cast l05 times faster than either

collisionat quenching or fluorescence decay. Since only one in l0 s

molecules fluoresce, prcdissociation results in a reduced signal

level; but its rapidity effectively precludes collisional quenching.

Another manifestation of the strong predissociation is that natu-

ral lifetime broadening dominates the transition lineshape [6] and

greatly reduces the sensitivity to collisional (and Doppler) broad-

cMng and shift. With ncg]ible influence from collisional processes,

the collected fluorescence is more easily interpreted since it is lin-

early depeIMent on density through the initial state population.

If the oxygen mole fraction is constant and the laser fluence not

excessive, the expression for the fluorescence signal, SF, can be
written as

SF = K_ p f_(T) (1)

for narrow-band excitation of a single transition, following the

dcriwttion in [2]. In the above expression, KF is an optical and

spectroscopic constant, p is density, and ft(T) is the tempera-
ture dependent Boltzmann population of resonant O2 molecules

in the ground state. For temperatures below 350 K, the tempera-
ture dependence of the fluorescence signal arises mainly from the

thermal change of the rotational energy distribution and only the

h)wcst vibrational level (v" = O) has significant population. The

expression for ft (T) for this temperature range is

f_(T) = (2I¢"+ 1) 20_ exp[-K"(K" + 1)(O_/T)I (2)--V

where K" is the grl)und state rotational quantum number, Or

is the characteristic rotational temperature (2.1 K), and T is

temperature.
Depending on the anticipated range of temperatures, the

lam:r is tuned to resonance with a rotational transition that has

l)cen selected for suitable temperature sensitivity and signal level.

Figure 1 illustrates the fluorescence signal temperature depen-

dence at constaIlt density given by equation (2) for two different

rotational transitions of the (4 _ 0) vibrational band. Signals for

each transition arc normalized by their respective values at 300 K.

The transition with the higher rotational quantum nnrnbcr, RI9,

has greater temperature sensitivity over the whole range as
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Figm'e t. Variation of LIF signals widl temperature for two dif-
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shown by the steeper slope of the solid line. Signal strength
for the R19 transition is sufficient for tcrnpcraturc measurements

abow: lot3 K. IIowcver, the sign,d is very weak beh)w I00 K

duc to relatively low population, aad the greater population of
the P15 transition makes it a better choice for measurements at

lower temperatures.
There have been sevcnfl demonstrations of temperature mea-

surement using LIF of oxygen at constant pressure [2,3,7-11].

Most of these experiments were directed toward high-temperat ure

applications, such as flame diagnostics, where the higher vibra-

tional lcvel_ of the ground electronic state are significantly poptt-

tatcd. Another technique for measuring tempcraturc.'s at varying

density or pressure relies on a two-transition approach [121. llow-

ever, if density is measured independently during the same laser

pulse, the density dependence of the LIF signal can be accounted

for and temperature can then be derived from the fluorescence

variation of a single transition [13].

Si}olltancous Ralllan scattering by oxygen and nitrogen

molecules provides a convenient, indepemtent measurement of

density that is also used to account for the density dependence

of the fluorescence. Any temperature sensitivity of the Raman

signals is removed by spectrally integrating the total Q-branch

scattering. Since the spontaneous Raman cross-section varies as

frequency to the fourth power, Raman scattering is more effi-
cient at ultraviolet wavelengths. Ia addition, the oxygen Raman

cross-section is considerably enhanced by near-resonant contri-

hutions wittdn the Schumann-Runge band that increase the scat-

tcwd light h:vel by a factor of 22 over the expected ievcl near

193 nrn [14}.
The Raman signal, Sjf, for coustant ,'fir composition can bc

simply written as
Sa = tG_ p (3)

where I(n in an optical and spectroscopic constant. Deztsity mea-

surements arc obtained directly from equation (3) and tempera-
ture measurements arc derived from the variation of the fluores-

cence signal (cqu. (1)) divided by the Raman signal (equ. (3)),

SF/Sa = (Kr/Ka) fl(T) (4)

Equations (3) and (4) are the basic relations used in this work. la

practicehowever, the ArF lascrinducesfluorescencefrom addi-
tionaltransitionsduc to spectraloverlapwith both narrow-band

and ,,nlockcd,broad-band radiation.(Not allof the amplified

laseremissionisnarrow-band when the laserisoperated in the

multipassamplifierconfiguration.)For thisreason a numerical

model of the O2-LIF process[2]isused tocvaluatcequation (4).

EXPERIMENTAL CONSIDERATIONS FOR TIIE

LiF/R TECIINIQUE

The optical configuration for implementation of the LIF/R

technique is shown in Fig. 2. Pulses from a tunable, ArF-cxcimcr

laser are delivered to the wind tunnel at a rate of 10 IIz and arc

focussed to a 0.5 mm by 1 mm spot at the measurement location.

Portions of the beam are split off before and after the wind tunnel

and directed to photodiodes to account for laser-pulse energy fluc-

tuations and varying attenuation. The [,IF and Raman signals

emanating from the laser probe volume are collected with a two-

lens telescope (magnification = 3.3) and dispersed by a 0.32 m

spectrometer fitted with a 1200 line/ram holographic grating.
An entrance slit width of 0.5 mm limits the observed length of

the probe volume to 0.15 mm for the pointwise measurements.

The dispersed spectrum is recorded by an optical rnultichanncl

au:flyzcr (OMA) and stored in a personal computer along with

the photodiode signals from the same laser pulse. Both the OMA

all(] I]1_ gahrd inlegrator arc. controllcd by a single per.,a3na] com-

puter using PC-DOS and multitasking software. Exposure of the
OMA to the 15 nscc laser pulse is controlled through gating of

the intensifier on the photodiodc array. As shown on the figure,

lilt: ()MA in triggcnxl at twice the laser repetition rate to ch'.ar the

array of accumulated signal from previous later pulp's. These sig-

nal remnants are cau_:d by slow radiative decay of the intensifier

phosphor (P-20 h)r this OMA) attd they generate a persistant

image that can compromise single-pulse spectral measurements

[xnl.
An invt_tigation of the nmgnitudc of the image persistance

effect for the OMA u.,a;d in this work and its reduction for differ-

cnt array cleaning schemes is summarized in Fig. 3. The figure

shows the image persistence, which is dcfiacd as ttle percentage of

the original image read off of the array billowing a trigger pulse,

as a fimction of time. Up to time I = 0, the OMA has been c.'x-

posed to light sig_mls induced by laser pulses at a rate of 10 Hz

(0.1 see between pul_s). At t = 0, the laser light is blocked,
but the OMA array is still read at each trigger pulse. SignaLs

read fiom the array after the light is blocked represent the sum

of decaying sig_ml remnants from previous exposures that remain

as an image on the long-lived intensifier phosphor. Tile circular

syml)ols represent the basic image persistance level of the OMA

for an array temperature of 20°C with no cleaning between laser

pulses. Signals arc only read from the OMA each time the laser

fires. At the time of tile first laser pulse following the block, 20%

of tit(: initial signal remains. After five pulses, the remaining sig-

nal has dccaycxt to about 3% of the original level. The solid line

through the circles is a power law fit to the data (c¢ t-n). If a

single cleaning pulse is supplied to the OMA between laser shots,

the image pcrsistance is substantially reduced, as shown by the

square symbol distribution. With the additional read between
la_:r shots, 4% of tlle original signal level remains on the ar-

ray at the time of the _:cond laser pul_ and about 1% is left

r =- I Gated

Figure 2. Experimental arrangement for the application of the

I,IF/R technique to the investigation of a tnrtmlent, supersonic

boundary layer flow.
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Figure 3. The magnitude of tile image persistence effect for tile

OMA used in tile LIF/R demonstration experiment and it's re-

duction for different cleaning pulse schemes. The dashed line

represents data measured by Shelling et al. [15] for the same

instrument with two cleaning pulses.

after five pulses. The dashed curve represents the image persis-

tence measured by Snelling ct al. [15] for the same OMA using a

variably-timed triggering scheme with two cleaning pulses. Their

array was operated at a lower temperature, -7°C which weakly

increases the persistence level. For two cleaning pulses between

laser shots, there is a further reduction in tile image pcrsistcncc

to less than 3% after the first laser shot and to less than 0.5%

after five laser shots. IIowcver, due to tile ease of adding the sin-

glc cleaning pulse and operating the array at 20°G , to minimize

the image persistence, the single cleaning pulse OMA-triggering

method was adopted for these experiments.

Despite the fact that not all of tile persistant image is re-

moved by the cleaning pulse before the subsequent laser shot, the

remnant is only 4% of the mean signal level. If the number of

shots acquired for each measurement is constant, then the addi-

tional signal contributions from image persistence arc constant

fractions of the average signals. This constant contribution can-

ccls when the measured signal is calibrated against a signal level

from a known reference condition, as illustrated by the Raman-

signal based devsity measurement,

p = (S,_/S,_.:._)p.:., (5)

The mean property values arc, therefore, unaffected by the phos-

phor lag. Temperature fluctuation measurements arc also un-

alfcctcd by image persistence because temperatures _u'e derived

from tile LIF signals divided by tile Raman signals for each laser

pulse (see equ. (4)). Normalizing the LIF signals in this manner

involves dividing the signals from photodiodes on one side of the

array by photodiode signals on the other side of the array. This

removes the persistent signal contribution directly for each flu-

orescence record since all photodiodes of the array arc ',dfcctcd

equally by the accumulatou of previous signal rcmnavts. IIow-

ever, tile Raman signals are not corrected in the same manner and

the image persistence adds an estimated uncertainty to the den-

sity fluctuation amplitude measurement of about 5% for ramtom

signal variations due to turbulence. Although an OIVIA is not

specifically required for tl,c application of the LIF/R technique,

the instrument is useful h)r initial flow flehl investigations because

the spectral record includes tile wavelength distribution of the sig-

nals as well as their magnitude. This additional infilrmation is

helpful in determining the level and source of undc.'sindfic emis-

sion from either flow contaminants or competing spcctro_opic

processes (see p. 4878 of [2], for cxantple).

TURBULENT, SUPERSONIC, AIR FLOW FACILITY

The wind tunnel used h)r the demonstration mcasurcm('nts is

a Math 2, blow-down facility that has a rectangular cross section

for providing two-dimensional flow. A schematic representation

of the tunnel is shown in Fig. 4. Clean, dry air at high pres-

sure and room temperature is expanded through a Lavat nozzle

into a long, slightly-dlvcrgcnt flow channel which was dcsi_ .ed to

provide fully turbulcut [luw and to accomodatc boundary layer

growth on the top and bottom walls. At the measurement loca-

tion, 0.76 m downstream of the throat, the test section is 32.5 mm

high by 63 mm wide, the frcc stream Mauh numbcr is 2.06, and

the boumtary layer is 12.1 mm thick. Laser beam access is pro-

vidcd through two ultraviolet-grade fused silica windows and light

signals arc collected through an identical window in tile top wall.

For the current setup, the long dimcnsion of the rectangular laser

spot is oricntcd perpendicular to the bottom wall of the tunnel

and tl,is limits the spatial resolution of the present boundary

layer survey to 1 tam. A pressure tap is located on the bot-

fore wall at the measurement location directly opposite the col-

lection window and is used to record tl, e static pressure during

the run and calibration measurements. Since the blow-down is a

constant-volume expansion process, both the stagnation pressure

and stagnation temperature dccrcase during the run. A thcrmo-

couple upstream of the Laval nozzle and a pressure tap in the

storage vessel are used to monitor the changing reservoir condi-

tions. The time-averaged stagnation conditions and important

boundary layer properties for the flow facility arc summarized in

Table 1. Flow ccntcr]ine pressure and temperature at Mach 2.06

arc nominally 32 kPa and 157 K for the given stagnation condi-

tions. The total run duration is 15 see and the useful steady-flow

measurement time is about 13 sec. For a laser repetition rate of

10 llz, at least 90 signal records can be acquired during a typical

wind tunnel run. Previous surveys of the boundary layer by pitot

Mach 2 nozzle and
test section

_ Detection

FIow_

Throat Laser Pressure

port

Figure 4. ,'xl,ch 2 wind tlLnncl used for the LIF/R (lcrnon_trati,)n

experiment. TI,c flow I)ropcrty survey was done in the bottom-

wall Iioumhu'y layer.

Table I. Tin)e-averaged proper|ies and

characlerislics of lhe turbulent, Mach 2

flow boundary layer.

Moo 2.06

Uoo 517 m/sec

5 12.1 mm

Rex 2.7 x 107

Re_ 4.4 x 105

Tstag 290 K

Pstag 270 kPa



probe, hot wire anemometer, thermocouple probe, and an NO-

LIF spectroscopic technique have characterized the mean prop-

crty and turbulent fluctuation variations in the flow [4,5]. These

surveys provide a useful benchmark for assessing the performance

of the present LIF/R optical technique. The only difference in the

operation of the wind tunnel for the current experiments is that
air is used as the flow gas whereas the previous measurements

wcrc undertaken in nitrogen.

LIF/R MEASUREMENT RESULTS

The implementation of thc LIF/R tcchniquc in the wind tun-

tic] requires that spectra collccted during tile tunnel run be com-

pared with an emission spectrum acquired at known density and

temperaturc for calibration of the signal levels. This aspect of

tile technique is illustrated in Fig. 5, which compares an averaged

spectrum from the wind tunnel boundary layer with a calibration

spectrum acquired at the same location in still air after the tunnel

run. The laser is resonant with the R19 (4 ,-- 0) transition and

each spectrum represents the average of 95 spectra that are nor-

malized by laser-pulse energy measurements. Tile mean flow anti

mean calibration conditions for the spectra are given in the figure

legend. Signal levels for the emission features are plotted versus

wavelength. The Oa and N2 Raman transitions are located on the

left and the O2-LIF emission features on the right are identified

by the difference in their final and inital ground state vibrational

quantum numbers. The fluorescence transitions used for the tem-
t)erature measurements are Av" = 4, 5, 6, and 7. A lower density

during the wind tunnel run is directly measured by the reduction

in Raman signal levels. The lower level of the mean LIF signal
for the wind tunnel run is due to both the decreased density and

a lower temperature. The Raman and LIF signals for each laser

pulse are obtained by integrating the selected features over their

rcspeetive wavelengths for each individual spectrum. Density and

temperature values for each pulse during the wind tunnel run are

then derived by comparing the signal levels with the mean cali-
bration values at the known reference conditions. An additional

result of the calibration spectrum acquisition for quiescent air is
the simultaneous determination of the instrumental noise level

in the absence of turbulent fluctuations. Single-pulse departures

from the mean of the measured property values during the wind
tunnel run are due to a combination of turbulent fluctuations

anti instrumcntal noise, and each contribution is statistically in-
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Figure 5. A comparison of the emission spectrum recorded in

the turbulent Mach 2 boundary layer with the emission Sl)cctrmu
at the same location in still air after the wiud tunnel nut. The

spectra were obtained at Y/_ = 0.68 al)ove tile bottom wall.
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dependent of the other. Therefore, the square of the calibration

deviations can be subtracted from the square of the tunnel run
deviations to remove the instrumental noise from the total fluc-

tuation level and determine the turbulent fluctuation amplitude.

Typical values of the instrumental noise level for these experi-

ments wcrc 4% for density and 3% for temperature.

Mean flow property measurements from the LIF/R boundary

layer survey are compared in Fig. 6 with results from the previous

cxpcrimcnts [4]. All measured flow properties are normalized by

their respective values in the free stream at the flow centerline
and the measurement locations are shown as the distance from

the bottom wall normalized by the boundary layer thickness, 6.

The upper d,tshcd line is the temperature distribution that was

derived from pitot-probc and thcrmocouple-probe survcys. Thc

flow temperature shows a monotonic decrease from the adiabatic
wall value to the free stream value. In the absence of an external

pressure gradient, the probe-measured static pressure is constant

through the boundary layer, as shown by the solid line. The den-

sity variation was obtained from the temperature and pressure

distributions using the ideal gas equation of state and is shown

by the lower dashed linc. (Although previous measurements of

the rncan flow properties were obtained with the NO-LIF tech-

nique [4], the results are not shown because they did not differ

from the probe-measured distributions.) Open symbols represent

mcasurcmcnts of mean flow density and temperature using the

LIF/R technique. The mean values obtained thus far agree with

the previous measurements to within 3% for density and 2% for

temperature. Through the ideal gas equation of state, the LIF/R-

measured densities and temperatures are used to derive the static

pressure distribution, which is denoted on the figure by the solid

squares. As e_xpcctcd, static pressure is constant to within 2%

through the boundary layer.

Thc uncertainty levels for these LIF/R measurements are

relatively high due to a strong instrumental noise contribution

from the image intensifier that is used to gate tile OMA. This

intensifier noise was larger than the photon-statistical noise con-

tribution for the measured signal levels. Consequently, the total

instrumental noise was effectively constant for a large range of

signals and the uncertainty for both variables can be calculated

using thc following rclations,

(6)
t_7/o \ sn )oJ

'f:

o
ct 1.0

t-

1.8 t i

I

%
%

I I I I

.... Pitot-statlc survey [4]

o T/T,_ O2-L!F/Raman
a p/pc,, 02 and N2 Raman
• P/P=, O2-LIF/Raman

J

i i i _1 I i ½ I
"20 .2 .4 .6 .8 1.0 1.2 11.4

Distance from wall (YI_) 'r_

Figure 6. I.IF/R measurements of mean densil_y and mean tem-

perature in the turl)ulcnt, Mach 2 boundary layer are compared

with results from previous surveys. The mean values at each
location arc norundiy,(YI ]))" their respective free stream values.



Ill tile above expressions, Ap/p is tile density uncertainty and

AT/T is the temperature uncertainty. ASp/Sp and ASR/SR

are tlm LIF and Raman signal uncertainties and both are given

by the measured instrumental noise levels discussed earlier (0.03

and 0.04, respectively). The subscript r refers to tile value mea-

sured during the tunnel run and the subscript c refers to tlm

caliln'ation value. 3_,.: constant in the temperature sensitivity

factor is the rotational energy level, B = K"(K" + 1)0m For

the R19 transition, the ground state rotational quantum nmnber,

K" = 19. The uncertainties in the reference vahtes of density and

tCmllerature were about 1% . Using these vahms and tlm above

relations, the uncertainties for the LIF/R boundary layer survey

were 5.5% for density and 2.5% for temperature. Agreement be-

tween the LIF/R measurements and previous results is within the

uncertainty for both variables.

Comparisons of the fluctuation amplitude distributions mea-

sured by the LIF/R technique with those from the previous mea-

surements are shown in Fig. 7a for temperature and in Fig. 7b for
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Figure 7(a) A comparison of tile RIklS temperature lluctuatious

measured with the LIF/R technique in the turbulent lklac'h 2

boundary layer with previous measurenmnts from hot-wire and

NO-LIF surveys, (b) a comparison of the RMS density flu('tna-

Lions lne_usurcd will, the LIF/I_. tcclmiquc i, the tm'lmlcnt lkh,4, 2

boundary layer with previous measurements from hot-wire aml

NO-LIP surveys.

density. Tile root-mean-square (RMS) fluctuation amplitude is

the average deviation level divided by the local mean property

value. Both variables are again plotted as a function of the nondi-

mensional distance from the bottom wall. The solid line in each

figure is a cubic spline interpolation of the hot-wire anemometer

measurements of Logan et al. [5].

Ill Fig. 7a, the RMS temperature fluctuation amplitud_

measured with the LIF/R technique are denoted by the open

circles and the NO-LIF values from [4,5] axe represented by the

solid circles. Each of the independently measured temperature

fluctuation distributions shows the same basic trend throughout

the boundary layer. The maximum temperature fluctuation am-

plitude of about 4.5% occurs near Y/,5 = 0.6, and in that region

the optically-measured amplitudes arc slightly greater than the

hot-wire measurements.

For the RMS density fuctuations in Fig. 7b, the LIF/R mca

surcmcnts arc the open triangles and the NO-LIF results from

[4,5] axe shown by the solid triangles. In the figure, there is some

disagTccment between the measured distributions that is quite

pronounced near K/5 = 0.6. Both of the optically-measured pro-

files show a substantially higher value for density fluctuations

in this region than indicated by the hot-wire measurements. In

the prcvious studies, this increase in density fluctuation level was

attributed to an unsteady, weak shock wave that moves intermit-

tcntly through the measurement location. IIistograms of more

than 300 single-pulse density measurements from the NO-LIF

tcchuiquc [16] show a bimodal distribution in this region, which

supl)orts the hyl)othesis that an unsteady wave is present. While

the preliminary LIF/R density record also inicates a bimodal dis-

tribution near Y/5 = 0.0, there arc not yet a sufficient number of

measurements to be conclusive. As described in [5], tile relative

change in flow properties caused by the unsteady wave movement

can l)e evaluated using the weak shock relations [17].

Ap 1 AT Ap Ap
= 7-- (8a, b)

p 7-1 T' P p

where P is the static pressure and 7 is the ratio of specific llcats.

The symbol A hcrc rcl:q't;scllts tlltr change ill properties from the

Ul)strcam side of the weak shock to the downstream side. For

a diatomic gas with 3' = 7/5, the de,mity change across a weak

shock wave is 2.5 times t,n'catcr than the change in temperature.

Therefore, the effect of the weak wave movement is more readily

apparent ill tile density fluctuation distribution than in the tem-

perature fll,ctuations. Pressure variation for the same weak shock

process is cvcn stronger (1.4 times greater than the density vari-

ation for 3' = 7/5). llowcver, to obtain density fluctuation am-

plitudes from hot-wire measurements, pressure fluctuations are

assumed to be negligible. This assumption is inappropriate for

this flow and tile weak-shock driven increase in the density fluc-

tuation level to 6.5% near Y/_f = 0.6 could not be measured with

the hot-wire ancInolneter,

CONCLUSIONS

Thc measurements of density, temperature, and their fluctu-

ations in the Mach 2 boundary layer represent the first application

of the LIF/R technique to the investigation of an unseeded, tur-

t)ulcnt, SUl)Crsonic flow. For each of the measured variables, tile

agq'ccmcnt betwccu the present and previous results demonstrates

tile ability of the LIF/R tcclmiquc to accurately characterize the

mean and fluctuating components in a typical wind tunnel.

With a siuglc cleaning 1)ulsc aml an array temperature of

2{I°C, the OMA irrmge persistence has a negligible affect on all

flow property mcasurernents. Tile instrumental noise level for

the present experiment is dominated by a strong contribution

from the OMA i,t(msificr that is larger than tile photon-statistical

noise c(mtrilmtion. This noise level is relatively high and it limits

the uncertainty of the measurements to 5.5% for density and 2.5%



for temperature. The LIF/R technique does not require an OMA
and efforts are underway to repeat the botmdary layer survey

with reflective filters and photomukiplier tubes in place of tile

OMA and spectrometer. The results of the repeated surveys will

guide further development of instrumentation for applications to

hypersonic flows.
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